
Python Basics
Whitespace matters! Your code will not run correctly if you use improper indentation.

this is a comment

Python Logic

if
 if test:

#do stuff if test is true
 elif test 2:

#do stuff if test2 is true
 else:

#do stuff if both tests are false

while
 while test:

 #keep doing stuff until
 #test is false

 for
 for x in aSequence:

do stuff for each member of
aSequence, for example: each
item in a list, each character
in a string, etc.

 for x in range(10):
do stuff 10 times (0 through 9)

 for x in range(5,10):
do stuff 5 times (5 through 9)

Python Strings
A string is a sequence of characters, usually used to store text.
Creation: the_string = “Hello World!”

the_string = ‘Hello World!’

Accessing: the_string[4] returns ‘o’

Splitting: the_string.split(‘ ‘) returns [‘Hello’, ‘World!’]
the_string.split(‘r”) returns [‘Hello Wo’, ‘ld!’]

To join a list of strings together, call join() as a method of the string you want to separate the values in the
list (‘’ if none), and pass the list as an argument. Yes, it’s weird.

words = [“this”, ‘is’, ‘a’, ‘list’, ‘of’, “strings”]
‘ ‘.join(words) returns “This is a list of strings”
‘ZOOL’.join(words) returns “ThisZOOLisZOOLaZOOLlistZOOLofZOOLstrings”
‘’.join(words) returns “Thisisalistofstrings”

String Formatting: similar to printf() in C, uses the % operator to add elements of a tuple into a string
this_string = “there”
print “Hello %s!” % this_string Returns “Hello there!”

Python Tuples
A tuple consists of a number of values separated by commas. They are useful for ordered pairs and
returning several values from a function.
Creation: emptyTuple = ()

singleItemTuple = (“spam”,) # note the comma!
thistuple = 12, 89, ‘a’
thistuple = (12, 89, ‘a’)

accessing: thistuple[0] returns 12

Python Dictionaries
A dictionary is a set of key:value pairs. All keys in a dictionary must be unique.
Creation: emptyDict = {}

thisdict = {‘a’:1, ‘b’:23, ‘c’:”eggs”}

accessing: thisdict[‘a’] returns 1

deleting: del thisdict[‘b’]

finding: thisdict.has_key(‘e’) returns False
thisdict.keys() returns [‘a’, ‘c’]
thisdict.items() returns [(‘a’, 1), (‘c’, ‘eggs’)]
‘c’ in thisdict returns True
‘thisisnotthere’ in thisdict returns False

Python List Manipulation
One of the most important data structures in Python is the list. Lists are very flexible and have many
built-in control functions.

Operation Syntax Return New Value

Create thelist = [5,3,‘p’,9,‘e’] No return value [5,3,‘p’,9,‘e’]

Accessing thelist[0] 5 Unchanged

Slicing thelist[1:3]
thelist[2:]
thelist[:2]
thelist[2:-1]

[3, ‘p’]
[‘p’, 9, ‘e’]
[5, 3]
[‘p’, 9]

Unchanged
Unchanged
Unchanged
Unchanged

Length len(thelist) 5 Unchanged

Sort thelist.sort() No return value [3,5,9,’e’,’p’]

Add thelist.append(37) No return value [3,5,9,’e’,’p’,37]

Return and Remove thelist.pop()
thelist.pop(1)

37
5

[3,’z’,9,’p’]
[‘z’,9,’p’]

Insert thelist.insert(2, ‘z’) No return value [3,’z’,9,’e’,’p’]

Remove thelist.remove(‘e’)
del thelist[0]

No return value
No return value

[3,’z’,9,’p’]
[’z’,9,’p’]

Concatenate thelist + [0] [’z’,9,’p’,0] [’z’,9,’p’]

Finding 9 in thelist True Unchanged

List Comprehension
A special expression enclosed in square brackets that returns a new list. The expression is of the form:
[expression for expr in sequence if condition]. The condition is optional.

>>> [x*5 for x in range(5)]
[0, 5, 10, 15, 20]
>>> [x for x in range(5) if x%2 == 0]
[0, 2, 4]

Python Function Definition
Function:

def myFunc(param1, param2):
“””By putting this initial sentence in triple quotes, you can
access it by calling myFunc.__doc___”””

 #indented code block goes here
 spam = param1 + param2
 return spam

