
Raspberry Pi
Temperature Sensor

Tutorial by Andrew Oakley
Public Domain 2 July 2016
www.cotswoldjam.org

Getting started
This tutorial shows you how to make a temperature sensor which shines red when hot, and blue
when cold.

Words you will see on the screen, or that you need to type in, are

highlighted like this. At the end of each line, press Enter.

Your tutor should have prepared your Raspberry Pi for you and given you a bag of components.
Alternatively, you can download the files from: cotswoldjam.org/tutorials

The electronics

A DS18B20 waterproof temperature sensor. It has three wires at
one end, and a metal sensor on the other end. This version is
waterproof and the sensor can be dipped in water. A smaller,
cheaper, non-waterproof version is also available.

A mini breadboard. This has a top and bottom
section. All the points along each column in each
section are joined, so we can make electrical
connections.

Three resistors. Check the coloured stripes - the two identical ones
are 220 Ohms and the odd one out (with a blue stripe) is 4700
Ohms. The more Ohms, the more resistance to electricity.
Resistors can be placed either way around.

Red and blue LEDs. The short leg is the negative leg. There is also
a flat side to the rim of the bulb; this will also indicate which side is
negative.

LEDs also need a small resistor to prevent them burning out. We
will use a 220 Ohm resistor for each LED.

Jumper wires. You should have six male-to-female jumpers (sticky-
outy at one end, inny at the other end) and one male-to-male
jumper (outy at both ends).

Your wires may be of many different colours.

http://www.cotswoldjam.org/
http://www.cotswoldjam.org/tutorials

The circuit
Place the components on the
breadboard like this.

The LEDs have their negative
connector (short leg, flat side) to
the right, on the same column as
the 220 Ohm resistors.

The temperature sensor has three
connectors:

 Grey (sometimes green or
black) - Negative or
Ground - should be on the
left

 Yellow (sometimes white) - Data - should be in the middle

 Red (sometimes brown) - Positive - should be on the right

The 4700 Ohm resistor crosses the columns between the temperature sensor's data connector
(centre), and the positive connector (right).

Next, connect three male-to-female jumpers between the temperature sensor and the Raspberry
Pi's GPIO pins.

Your jumper leads may be different colours. The author of this document is heavily colour-blind.
What matters is that the wires go to the right places. Ignore the colours.

Ground (negative)
goes to pin 6 (GND).

Data (middle
connector) goes to
pin 7 (GPIO4).

3.3v (positive) goes
to pin 1.

Note that pin
numbers ("board
numbers") and
GPIO numbers
("BCM numbers" -
Broadcom, the
processor maker)
are not the same.
Check the diagram.

Now connect the jumpers between the LEDs
and the Raspberry Pi.

A male-to-female jumper goes from the positive

leg of the blue LED to pin 16 (GPIO23)

Another male-to-female jumper goes from the

positive leg of the red LED to pin 18 (GPIO24)

A male-to-male jumper crosses between the

resistors in the bottom section, and finally, a

male-to-female jumper goes from one of the

resistors in the bottom section, to pin 14 (GND).

Configuring the Pi for 1-Wire Sensors
The temperature sensor uses a 1-
Wire interface (positive and negative
connectors, plus 1 data connector).
We need to turn 1-Wire on.

From the Raspberry Pi desktop, click
Menu - Preferences - Raspberry Pi
Configuration.

From the Configuration program, click
the Interfaces tab at the top. Then
find the 1-Wire row and click
Enabled. If it's already enabled,
that's fine. If it wasn't already
enabled, you will be asked to reboot
the machine - make sure you reboot.

First program - taking the temperature
From the menu, select Programming - Python 3. Then use File, New Window to create a new
program and type it in. Alternatively you can load the ready-made program using File, Open,
then scroll sideways and double-click the python folder, then double-click the temperature
folder, then click temp1.py and Open.

When typing in the program, make sure you put spaces where they're needed at the start of
lines. For example, two spaces before temp=readtemp.readtemp() . Spaces must line up.

import gpiozero, readtemp

from time import sleep

while True:

 temp=readtemp.readtemp()

 print ("Temp: {}c".format(temp))

 sleep(0.1)

Run the program by selecting Run menu, Run Module. You should see some temperature
readings! Try warming up the sensor by holding it tightly. Stop the program by holding down
the CTRL key and pressing C.

import teaches the computer about new things, using small programs that other people have
written. We use the word "library" to decribe this. gpiozero is a library that makes the GPIO
pins easy to use. readtemp is a library that makes the temperature sensor easy to use. We
also import the sleep command from the time library.

while True: repeats a section forever (keep going while… always!)

temp=readtemp.readtemp() reads the temperature from the sensor, and places the value in
Celcius into the variable named temp . Variables are like boxes which can hold numbers or
words.

print outputs information to the screen. In this case, a temperature reading.

sleep waits for a number of seconds. We leave a gap of 0.1 of a second between readings.
However, readings also take a moment, so the loop doesn't go too fast.

Second program - lighting the LEDs
Change the program, or load in the temp2.py file:

import gpiozero, readtemp

from time import sleep

cold=22

hot=32

blueled=gpiozero.PWMLED(23)

redled=gpiozero.PWMLED(24)

blueled.on()

redled.on()

while True:

 temp=readtemp.readtemp()

 hotness=(temp-cold)/(hot-cold)

 if hotness>1:

 hotness=1

 if hotness<0:

 hotness=0

 print ("Temp: {}c - Hotness {}".format(temp,hotness))

 blueled.value=1-hotness

 redled.value=hotness

 sleep(0.1)

Run the program by selecting Run menu, Run Module. The red and blue LEDs will change
their brightness depending on the temperature! Stop the program with CTRL-C and try
changing the values of cold and hot . Body temperature is about 37, an ice cube is 0 and a
typical room temperature is 22 degrees celcius.

gpiozero.PWMLED tells the computer that we have an LED connected, and that we will change
the brightness using Pulse Width Modulation - flashing it on and off very quickly!

We set the brightness to a level (hotness) depending on the temperature between cold and hot .
If the temperature is hot or above, only red lights up (hotness is set to 1). If it's cold or below, only
blue (hotness is set to 0). If it's in between, the brightness of blue and red will be dim or bright
depending on temperature - that's the maths that does (temp-cold) divided by (hot-cold). Try
working out the maths with a pencil or a calculator!

So hotness is always a decimal number between 0 (cold) and 1 (hot). We use a neat maths trick
for the blue LED to get the "reverse" of the brightness; 1 minus hotness. When hotness is 0.8, the
blue LED's brightness is 1-0.8 = 0.2 .

Advanced programmers
Have a look at the readtemp.py library to find out how we get the readings from the temperature
sensor. Find the file /sys/bus/w1/devices/28-something/w1_slave and output the readings from
the terminal using cat .

